
蔡润龙
青年研究员
runlong_cai@fudan.edu.cn
研究兴趣
大气纳米气溶胶成因与环境效应
气溶胶与气态前体物测量与仪器开发
大气气溶胶与气态前体物生成实验室模拟
教育背景
2010年9月 - 2014年7月🧥♌️,清华大学环境学院,本科生
2014年9月 - 2019年7月,清华大学环境学院,博士生
研究经历
2019年9月 - 2023年11月👩🎓,芬兰赫尔辛基大学大气与地球系统科学研究院,博士后
2023年11月 至今,上海万事娱乐平台环境科学与工程系🤵,青年研究员/博士生导师
承担课题
国家自然科学基金委青年科学基金项目(C类)“基于有机胺化学电离质谱开发的中低氧化态有机物对城市大气纳米气溶胶生长贡献研究”(主持)⛹🏿♂️,2025年1月-2027年12月
芬兰科学院博士后计划“污染大气环境中的新粒子生长”(主持),2020年9月-2023年8月
教学经历
本科生课程✋🏽:环境工程原理(荣誉)
研究生课程:环境工程基础与前沿
获奖情况
2024年,海外博士后支持专项
2023年,上海市白玉兰人才计划青年项目
2021年,气溶胶青年科学家奖(GAeF Award)
发表论文
[1] Cai, R.*, Mikkilä, J., Bengs, A., Koirala, M., Mikkilä, J., Holm, S., Juuti, P., Meder, M., Partovi, F., Shcherbinin, A., Worsnop, D., Ehn, M., & Kangasluoma, J. (2024). Extending the Range of Detectable Trace Species with the Fast Polarity Switching of Chemical Ionization Orbitrap Mass Spectrometry. Analytical chemistry, published online.
[2] Cai, R.#, Yin, R.#, Li, X.#, Xie, H.-B.*, Yang, D., Kerminen, V.-M., Smith, J. N., Ma, Y., Hao, J., Chen, J., Kulmala, M., Zheng, J., Jiang, J.*, Elm, J. (2023). Significant contributions of trimethylamine to sulfuric acid nucleation in polluted environments. npj Climate and Atmospheric Science, 6:75.
[3] Stolzenburg D.*, #, Cai R.*, #, Blichner, S. M., Kontkanen J., Zhou P., Makkonen R., Kerminen V.-M., Kulmala M., Riipinen I., Kangasluoma, J. (2023). Atmospheric nanoparticle growth.Reviews of Modern Physics, 95, 045002.
[4] Li, C., Zhao, Y., Li, Z., Liu, L., Zhang, X., Zheng, J., Kerminen, V.-M., Kulmala, M., Jiang, J., Cai, R.*, Xiao, H.* (2023). The dependence of new particle formation rates on the interaction between cluster growth, evaporation, and condensation sink. Environmental Science: Atmosphere, 3: 168-181.
[5] Cai, R.*, Deng, C., Stolzenburg, D., Li, C., Guo, J., Kerminen, V.-M., Jiang, J., Kulmala, M., Kangasluoma, J. (2022). Survival probability of new atmospheric particles: closure between theory and measurements from 1.4 to 100 nm, Atmospheric Chemistry and Physics, 22: 14571–14587.
[6] Cai, R.*, Huang, W., Meder, M., Bourgain, F., Aizikov, K., Riva, M., Bianchi, F., Ehn, M*. (2022). Improving the sensitivity of Fourier transform mass spectrometer (Orbitrap) for online measurements of atmospheric vapors. Analytical Chemistry, 94: 15746-15753.
[7] Cai, R., Yin, R., Yan, C., Yang, D., Deng, C., Dada, L., Kangasluoma, J., Kontkanen, J., Halonen, R., Ma, Y., Zhang, X., Paasonen, P., Petäjä, T., Kerminen, V.-M., Liu, Y., Bianchi, F., Zheng, J., Wang, L., Hao, J., Smith, J. N., Donahue, N. M., Kulmala, M.*, Worsnop, D.R., Jiang, J*. (2022). The missing base molecules in atmospheric acid-base nucleation.National Science Review, 126: 5040–5049.
[8]Cai, R.*, Häkkinen, E., Yan, C., Jiang, J., Kulmala, M., Kangasluoma, J. (2022). The effectiveness of the coagulation sink of 3–10 nm atmospheric particles. Atmospheric Chemistry and Physics, 22: 11529–11541.
[9] Cai, R.* and Kangasluoma, J. (2022). The proper view of cluster free energy in nucleation theories. Aerosol Science and Technology, 56: 757-766.
[10] Cai, R., Yan, C., Yang, D., Yin, R., Lu, Y., Deng, C., Fu, Y., Ruan, J., Li, X., Kontkanen, J., Zhang, Q., Kangasluoma, J., Ma, Y., Hao, J., Worsnop, D. R., Bianchi, F., Paasonen, P., Kerminen, V.-M., Liu, Y., Wang, L., Zheng, J., Kulmala, M., Jiang, J.* (2021). Sulfuric acid–amine nucleation in urban Beijing. Atmospheric Chemistry and Physics, 21:2457-2468.
[11] Cai, R., Yan, C., Worsnop D. R., Bianchi F., Kerminen V.-M., Liu Y., Wang L., Zheng J., Kulmala M., Jiang, J.* (2021). An indicator for sulfuric acid-amine nucleation in atmospheric environments. Aerosol Science and Technology, 55:1059-1069.
[12] Cai, R., Li, Y., Clément, Y., Li, D., Dubois, C., Fabre, M., Besson, L., Perrier, S., George, C., Ehn, M., Huang, C., Yi, P., Ma, Y.*, Riva, M.* (2021). Orbitool: A software tool for analyzing online Orbitrap mass spectrometry data. Atmospheric Measurement Techniques, 14:2377–2387.
[13] Cai, R.*, Li, C., He, X.-C., Deng, C., Lu, Y., Yin, R., Yan, C., Wang, L., Jiang, J., Kulmala, M., Kangasluoma, J. (2021). Impacts of coagulation on the appearance time method for new particle growth rate evaluation and their corrections. Atmospheric Chemistry and Physics, 21:2287-2304.
[14] Li, C. and Cai, R.* (2020). Tutorial: the discrete-sectional method to simulate an evolving aerosol. Journal of Aerosol Science, 150: 105615.
[15] Cai, R., Zhou, Y., Jiang, J.* (2019). Transmission of charged nanoparticles through the DMA adverse axial electric field and its improvement. Aerosol Science and Technology, 54:21-32.
[16] Cai, R. and Jiang, J.* (2019). Models for estimating nanoparticle transmission efficiency through an adverse axial electric field. Aerosol Science and Technology, 54:332-341.
[17] Cai, R.*, Jiang, J., Mirme, S., Kangasluoma, J. (2019). Parameters governing the performance of electrical mobility spectrometers for measuring sub-3 nm particles. Journal of Aerosol Science, 127:102-115.
[18] Cai, R.#, Yang, D.#, Ahonen, L. R., Shi, L., Korhonen, F., Ma, Y., Hao, J., Petäjä, T., Zheng, J.*, Kangasluoma, J., Jiang, J.* (2018). Data inversion methods to determine sub-3 nm aerosol size distributions using the particle size magnifier. Atmospheric Measurement Techniques, 11:4477-4491.
[19] Cai, R., Chandra, I., Yang, D., Yao, L., Fu, Y., Li, X., Lu, Y., Luo, L., Hao, J., Ma, Y., Wang, L., Zheng, J., Seto, T., Jiang, J.* (2018). Estimating the influence of transport on aerosol size distributions during new particle formation events. Atmospheric Chemistry and Physics, 18:16587-16599.
[20] Cai, R.*, Attoui, M., Jiang, J., Korhonen, F., Hao, J., Petäjä, T., Kangasluoma, J. (2018). Characterization of a high-resolution supercritical differential mobility analyzer at reduced flow rates. Aerosol Science and Technology, 52:1332-1343.
[21] Cai, R.#, Yang, D.#, Fu, Y., Wang, X., Li, X., Ma, Y., Hao, J., Zheng, J.*, Jiang, J.* (2017). Aerosol surface area concentration: a governing factor in new particle formation in Beijing. Atmospheric Chemistry and Physics, 17:12327-12340.
[22] Cai, R. and Jiang, J.* (2017). A new balance formula to estimate new particle formation rate: reevaluating the effect of coagulation scavenging. Atmospheric Chemistry and Physics, 17:12659-12675.
[23] Cai, R., Chen, D.-R., Hao, J., Jiang, J.* (2017). A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing. Journal of Aerosol Science, 106:111-119.
[24] Tang, Q.#, Cai, R.#, You, X.*, Jiang, J.* (2017). Nascent soot particle size distributions down to 1 nm from a laminar premixed burner-stabilized stagnation ethylene flame. Proceedings of the Combustion Institute, 36:993-1000.